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An integral equation is first set up which allows the osmotic pressure to be calculated from 
knowledge of (a) the concentration fluctuations and (b) the equations of state of the two pure 
liquids 1 and 2 which are constituents of the binary 1-2 mixture. The method is illustrated by 
approximate numerical calculations on a variety of liquid binary mixtures, including Na-Ga 
and Na-Cd under pressure. 

1 INTRODUCTION 

Although first principles calculations of force laws in solid and liquid metal 
alloys are by now possible from electron theory, simpler descriptions remain 
of interest for many practical purposes. In particular, chemical solution 
theories continue to merit further study. It was shown, for example, by 
Bhatia er al.,’ that regular solution theory provided a valuable framework 
for interpreting the concentration fluctuations, as well as the liquidus 
curves,’ of liquid Na-K alloys. 

Later work by Bhatia and March3 focussed on the use of Flory’s model4 
for treating liquid Na-Cs alloys, in which the ratio of the atomic volumes is 
near to a factor of 3. It has been known for a long time that, while regular 
solution theory can, roughly, accommodate volume ratios of about 2, that 
for Na-K, it rapidly breaks down when larger size differences are involved. 

t On leave from the University of Dhaka, Ramna, Dhaka-2 Bangladesh 
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This work on Na-Cs has been taken further, for example in the study of 
Neale and Cusack’ and very recently by Singh and Bhatia.6 

The present paper is primarily concerned with the osmotic pressure as a 
useful tool linking the thermodynamic properties of binary liquid mixtures 
with the thermodynamics of the pure components. While this can be said, in 
essence, to be the aim of all solution theories, it is presently the case, almost 
always, that the existing relations are more restrictive; they use only informa- 
tion about the pure liquids l and 2 in a liquid binary 1-2 mixture at the same 
thermodynamic state, p ,  T say, as that of the mixture. 

It was recently pointed out by one of us,’ in placing an earlier suggestion 
of Hammel’ on a rigorous thermodynamic footing, that a more powerful 
approach to solution theories might be to exploit the knowledge of the 
thermodynamic properties of the pure liquids 1 and 2 as a function of 
pressure, at the temperature T say of the alloy experiments. The tool that 
then proves convenient, as Hammel’ originally suggested, is the osmotic 
pressure. 

The outline of the present paper is as follows. In Section 2 below, we outline 
the theory relating osmotic pressure to concentration fluctuations in the 
solution, and to the equations of state of the pure liquids 1 and 2. In 
Section 3, this approach is then applied directly to liquid Na-Ga and 
Na-Cd alloys, for which there are observations on the pressure dependence 
of the concentration fluctuations, via activity coefficient measurements. 

To compare osmotic pressures derived from this approach with model 
predictions, Section 4 is briefly concerned with the “conformal” solutions 
Na-K, Ar-Kr and Kr-Xe. Then in Section 5 ,  Flory’s model, appropriate 
for the case when the size difference between the components is large, is 
considered in relation to data on liquid Na-Cs. Section 6 constitutes a 
summary, together with a brief discussion of the likely role of osmotic 
pressure in solution theories. 

2 RELATION BETWEEN OSMOTIC PRESSURE AND 
CONCENTRATION FLUCTUATIONS 

Paralleling the argument presented in Ref. 7, we express the Gibbs free 
energy G of the mixture at concentration x as 

G (1 - X ) P ~  + X P ~ .  (2.1) 

The condition for osmotic equilibrium between pure component 1, with 
chemical potential py, and the solution, is 

k ( P ,  T ,  x> = P X P  - n,, 7-1 (2.2) 
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OSMOTIC PRESSURE OF MIXTURES 157 

where n, is the appropriate osmotic pressure. Similarly, for osmotic equi- 
librium between pure component 2 and the solution we can write the 
corresponding result 

(2.3) PZ(P, T ,  x )  = 1-1% - n23 7-1. 

At this stage we note that the Gibbs-Duhem relation permits one to write' 

ac 
p 1  = G - x -  

ax 

and 

dG 
1-12 = G + (1 - x ) - - .  ax 

(2.4) 

The concentration fluctuations  AX)^ = Sxx say, are related to the Gibbs 
free energy by'-3 

and hence one can write from Eqs (2.4) and (2.6): 

a2G N k B  T 
~ --x--=-x- aP1 - 
ax ax2 SXX 

- 

Similarly, from Eqs (2.5) and (2.6) one finds 

equations (2.7) and (2.8) being an alternative way of ensuring the Gibbs- 
Duhem relation. 

At this stage, we return to the condition of osmotic equilibrium (2.2), and 
introducing this into Eq. (2.7) leads to 

the prime denoting differentiation with respect to the total argument 
p - n,. But this derivative ~ 7 '  is simply the volume V?(p - II,, T )  of pure 
liquid 1, no longer though at the thermodynamic state p ,  T of the mixture 
measurements, but at the different thermodynamic state p - n,, T .  Hence 
one can write 

(2.10) 
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This first-order differential equation is readily integrated to yield 

(2.1 1) 

This Eq. (2.1 I )  is plainly an implicit equation from which the osmotic 
pressure n, can be determined if one is given the concentration fluctuations 
S,, and the equation of state of pure liquid 1. Equation (2.11) plus a corre- 
sponding equation determining the osmotic pressure I7, in Eq. (2.3) 
constitute the basis for the calculations presented in Sections 3-5 below. 

In order to make the application of Eq. (2.11) a little more transparent, 
before the detailed use in Sections 3--5 below, let us make the approximations 
in the right-hand side of Eq. (2.11) that (i) S,, = x(l - x), its value in an 
ideal solution, and (ii) n, can be neglected compared with p .  Then one can 
integrate to find 

VYn,  = -Nk,T ln(1 - x), (2.12) 

which is an often quoted result’ for the osmotic pressure of an ideal solution. 
To complete this discussion, we merely note that the corresponding result 

for ll, may be expressed in the form 

(1 - x)Nk,T 1 

= s, s,, v;(p - n,, T )  
(2.13) 

The remainder of the paper is concerned with some numerical consequences 
of these results (2.11) and (2.13) for liquid alkali metal alloys. We stress, 
though, that these equations are exact consequences of thermodynamics for 
all binary mixtures. 

3 OSMOTIC PRESSURE OF LIQUID Na-Ga AND Na-Cd UNDER 
EXTE R N A L P R ESS U RE 

We stress immediately that Eq. (2.11) will come into its own for liquid 
mixtures at high external pressure p ,  over a range of concentration x for 
which p - n,(x)  > 0. Plainly, if S,, is known from experiment, then 
Eq. (2.1 1) can be solved iteratively to determine n,(x), given also the equation 
of state of the pure substance 1. 

To illustrate the nature of the results thereby obtained, Figure 3.1 shows 
the osmotic pressure of liquid Na-Ga alloys as a function of concentration. 
Though we have, in fact, plotted curves for both p = 1 bar and p = 500 bar 
over the entire range of concentration, using the concentration fluctuation 
data given in Ref. 10, we have assumed the dependence on x of V(: to  be 
weak compared with the dependence of S,,. In practice, the physical range 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



OSMOTIC PRESSURE OF MIXTURES 159 

2. 0 

1 .  5 

I- 

Y 
z 
\ 1.0 

m 

‘r- 
>- 

0 5  

0. 0 

I 
/ 

I 1  / . 

0. 00 0. 25 0. 50 0. 75 1.00 

GA X NA 
FIGURE 3.1 Osmotic pressure II, for liquid Na-Ga alloys. Curve I is calculated for external 
pressure equal to 1 atmosphere. Curve I1 is for p = 500 bar. The physically significance range, 
however, of curve I is near x = 0, while that for p = 500 bar is for .Y < 0.3. However, the main 
point made by the curves is that, at external pressures of a few kilobar, the external pressure 
dependence of the  osmotic pressure for concentrations around x - 0.7 should be considerable. 
Temperature is 843 K.  

of the curves in Figure 3.1 is quite limited; for 500 bar external pressure 
the range of physical interest is 0 < x 5 0.3 while for p = 1 bar the range 
is a tiny region only near x = 0. It is clear from Figure 3.1 that, to enter the 
regime where external pressure effects change the osmotic pressure impor- 
tantly one will have to apply pressures eventually of the order of 1500 to a 
few thousand bar. However, in this pressure range, our calculations reveal 
that osmotic pressure will become sensitive to p for x - 0.5. Clearly, should 
it eventually prove of interest, plots of n,(x) can be readily added to 
Figure 3.1. 

Figure 3.2 shows that the situation is rather different for liquid Na-Cd, 
where we have used the concentration fluctuation data of Ref. 10 again under 
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5.0 5 

0. 00 0. 25 0. 50 0. 75 I .  00 

CD X NA 
FIGURE 3.2 Same as Figure 3.1 but for liquid Na-Cd alloys at 673 K 

external pressure. Here pressure effects are much smaller and we need not 
go into further detail in this example. 

4 CONFORMALSOLUTION MODELCOMPARED WITH EXPERIMENT 
FOR Na-K, Ar-Kr AND Kr-Xe 

Briefly, we note that in liquid Na-K alloys, it was shown by Bhatia et al.’ 
that the observed concentration fluctuations are well represented by 

x(l - x) 
2w s x x  = 

1----- NkB 4 1  - x> 
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4 - 0  r--- 

0. 5 

0. 0 

0. 00 0. 25 0. 50 0. 75 I .  00 

K, KR,.XE X NA, AR, K R  
FIGURE 4.1 Curve I Liquid Na K at 373 K ;  Curve I1 Liquid Ar-Kr at 116 K ;  Curve TI1 
Liquid K r ~  Xe at  161 K ;  Curve IV Ideal solution. 

The “experimental” results for tl I(x) derived from Eq. (2.1 I )  with measured concentration 
fluctuations S,, are largely indistinguishable graphically from the results of the conformal 
solution model. In particular curves I1 and 111 cannot be separated graphically. 

Curve I of Figure 4.1 shows a plot of n,(x) for Na-K; the conformal 
solution results, assuming V(: is independent of x, compared with the 
relatively strong dependence of S,,, are indistinguishable from experiment.’ 
However, the same reservations are applicable to this figure as apply to 
Figure 3.1 ; i.e. the physical range of x is very small at atmospheric pressure. 
We presently know of no measurements of S,, at other pressures for liquid 
Na-K; however Bhatia et al.” have given estimates of the way the inter- 
change w in Eq. (4.1) will vary with external pressure. Should experimental 
data under pressure become available on this system, it will be of interest 
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to use this predicted interchange energy within the conformal solution 
model. I 

Also added to Figure 4.1 are results for liquid Ar Kr and Kr Xe; similar 
conclusions obtain. The conformal solution model seems truly excellent for 
these three mixtures. 

5 OSMOTIC PRESSURE IN FLORY’S MODEL 

Bhatia and March3 have given the concentration fluctuations S,, derived 
from the model originally proposed by F l ~ r y , ~  in terms of two parameters, 
the interchange energy, conveniently written scaled with N k ,  T ,  namely 

and the ratio of atomic volumes rB/rA = I’, embodied in the parameter /I 
defined by 

p = ( P  - l)/r (5.2) 

The result given by Bhatia and March for S,,, the concentration fluctuations, 
is then 

x(l - x) 
1 - x(l - x)F(x) Sx, = 

where F(x) is given by 

(5.3) 

We note at this point that, if we take the limit /3 -+ 0 in Eq. (5.4), then both 
numerator and denominator have leading terms of order pp3 and 
F(x) + 2 W as f l +  0, leading back to regular solution theory in the form of 
Eq. (4.1). The important feature to emphasize at this point is that, while 
regular solution theory is dependent only on the concentration x through 
the combination x( 1 - x), and therefore the concentration fluctuations are 
symmetrical about x = (see Section 4 above for Na-K), for the Flory 
model this is no longer true, a situation which is essential to describe experi- 
ments on Na-Cs.’ Following the same procedure as above, we insert the 
approximation for S,, defined by Eqs. (5.3) and (5.4) into Eq. (2.11) and 
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again assume in the right-hand side that II, can be neglected compared with 
p .  Then we find the result 

x2 
[a-1 - X I 3  

dx ~ y n , ( x )  = - h ( l  - x) - 
N k B  T 

dx; r = [(;)(I - fi)W - f l - '  . ( 5 . 5 )  1 x x r  
- s, [ f l -  - X I 3  

This has been evaluated using the values of the parameter W = 1.14 at 
383 K given by Bhatia and March; the result for V ~ I I , / N k B T  being plotted 
against x in Figure 5.1 

2. 0 
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u 1.0 z 
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0.0 
0. 00 0. 25 0. 50 0. 75 1.00 

cs X NA 
FIGURE 5.1 Osmotic pressure for liquid Na-Cs. Experimental concentration fluctuation 
dataI4 are used to obtain curve I .  Flory's model is plotted in curve 11. Note that this curve for 
other than very low concentrations will only be physically realizable at high external pressures; 
expected to lie in the range of a few kilobar. Temperature is 383 K. 
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This has then been put back into the right-hand side of Eq. (2.11), the 
equation of state of pure liquid Na again being employed. The next approxi- 
mation is thus obtained (see also Appendix 2 for analytical work on the 
inclusion of I l l  in the right-hand-side of Eq. (2.1 1). 

6 SUMMARY AND DIRECTIONS FOR FUTURE WORK 

We have explored in this paper the nature of the osmotic pressure in a 
variety of solutions. We have to say that, at the present time, it is not clear 
to us whether it will technically be feasible to measure the osmotic pressure 
of liquid metal mixtures, either at atmospheric pressure, or preferably at 
external pressures of some kbar. If this does become a practical possibility 
later, then our work indicates that one favourable case to explore would be 
liquid Na-Ga. Here we expect that, once the range of a few kbar external 
pressure is reached, there will be appreciable dependence of the osmotic 
pressure as a function of concentration with external pressure p .  

Though less interesting in the present context, we have also briefly con- 
sidered liquid Na-K, Ar-Kr and Kr-Xe mixtures; here all evidence points 
to the fact that, for thermodynamic purposes, the conformal solution model 
is an excellent one. However, we have pointed out that the work of Bhatia 
et al. indicates rather clearly that the interchange energy in the conformal 
solution Na-K must vary significantly with external pressure, and this 
point will be well worth testing experimentally in the future. 

The Flory model is briefly considered in the present context in relation 
to liquid Na-Cs alloys where size differences are too large for conformal 
solution theory to apply. 

Finally, the results of this paper show that the use of osmotic pressure as a 
tool in solution theories is most likely to come into its own at pressures 
which, at least for liquid Na-Ga, will be in the range of several kbar. 
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Appendix 1 
of liquid mixture 

Osmotic pressure and compressibility 

For use in the calculations in Section 3, we summarize here the exact thermo- 
dynamics of the quantity V K ,  for the liquid mixture, V being the mixture 
volume and K ,  its isothermal compressibility.' 

From Eqs (2.1)-(2.3), one can evaluate V = ( d G / d ~ ) , , ~  and the isothermal 
compressibility from 

The result for the desired product V K ,  can be written: 

(A1.2) 

This result is the exact version of the Hammel proposal summarized in 
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Eq. (1) of Ref. 7. This proposal is evidently correct when the pressure 
derivatives of the osmotic pressure are negligible. 

Appendix 2 
for osmotic pressure by low order Taylor expansion 

Approximate solution of integral Eq. (2.11) 

As discussed especially in Section 3, the integral Eq. (2.11) for the osmotic 
pressure n, can be solved by iteration, given the concentration fluctuations 
S,, as a function of concentration x and the equation of state of pure 
liquid 1. 

We have discussed examples in which n, is neglected relative to p in the 
integral term in Eq. (2.11); this evidently reduces the integral equation for 
n, to a formula for the osmotic pressure involving straightforward 
quadrature. 

In this same spirit, it is of interest to consider including the next term in 
the Taylor expansion in n, of the quantity V?(p - ll,, T )  in Eq. (2.11); this 
is the purpose of the present Appendix. 

Assuming the “correction” term in 

(A2.1) 
a v: 

V?(p - n,, T )  = q p ,  7,) - n, - ( p ,  T )  + . ’ *  

a P  

is small compared with V?, we can rewrite Eq. (2.10) in the form 

(A2.2) 

where K(TI’, the isothermal compressibility in pure liquid 1, has been intro- 
duced through Eqs (2.10). Evidently, given explicitly the concentration 
fluctuations S,, as a function of x, Eq. (A2.2) is a quite explicit first-order 
linear differential equation to solve for the osmotic pressure H 

Introducing the dimensionless variable y defined by 

(A2.3) 
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and the parameter y given by 
Nk,TK,"' 

v: Y =  

we find the reduced form of Eq. (A2.2) to be 

aY Y X  x - + --y = ..-~. 
ax S X X  s x x  

167 

(A2.4) 

(A2.5) 

This equation is readily solved by means of the integrating factor 
exp(?; 1 x/SxX dx), to yield 

y = +y-l + K exp( -y 
dx) 

4. 0 

3. 5 

3. 0 

2. 5 

I- 

y 2. 0 z 
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m 

I .  5 
E- 
>- 

I .  0 

0.5 

0. 0 

(A2.6) 

1 

0. 00 0. 25 0. 50 0. 75 1.00 

KR X AR 

FIGURE A2.1 
of Figure 4.1. Curve I1 shows effect of non-zero y in Eqs (A2.5) and (A2.7). y is 0.064. 

Osmotic pressure for conformal solution Ar-Kr. Curve I is as in curve I1 
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with K the arbitrary constant of integration. As x + 0, IT, -+ 0 and hence 
from the definition (A2.3), y tends to zero. Thus K = - y - ’ ,  which leads to 

YJ’ = + 1 -exp( - j ,  6 & dx) . 

As y + 0, this yields 

y = s,’ & dx 

(A2.7) 

(A2.8) 

which is the limit employed in the analytical examples in the main text. 
Equation (A2.7) has also been evaluated numerically for liquid Ar-Kr 

and is shown in curve I1 of Figure A2.1, S,, being again taken from conformal 
solution theory. It should be noted that, in liquid metals just above the 
melting temperature T,, the quantity y is simply the long-wavelength limit 
of the liquid structure factor S ( k ) ;  S(0) IT, being about 0.01-0.03 typically. 
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